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1 Introduction

The AdS/CFT correspondence [1–3] is a powerful conjecture which relates theories of grav-

ity (and extensions) in spacetimes including an asymptotically anti-de Sitter (AdS) factor

to conformal field theories (CFT) formally defined on the boundary of AdS. Gravitational

physics is completely absent in the explicit formulation of the CFT but is nevertheless

somehow encoded therein by virtue of the duality. In one of its manifestations, the cor-

respondence states that the generating functional for the CFT is given by the partition

function for the dual supergravity (SUGRA) theory, supplemented by certain boundary

conditions for the SUGRA fields.1 In this way each supergravity field is in one-to-one

correspondence with a CFT operator: the non-normalizable solution for the SUGRA field

plays the role of a source for the gauge invariant operator on the CFT side. This state of

affairs allows a dual interpretation of configurations (and its evolution) in the bulk of the

spacetime in terms of a unitary field theory on the boundary.

One of the many applications of the gauge/gravity duality mentioned in the previous

paragraph concerns the black hole information paradox [6]. This is one of the major

long-lasting conceptual problems in physics and it is related to the issue of unitarity in

gravitational systems. Long ago, Hawking showed by a semiclassical calculation that black

holes radiate [7] and the resulting emission spectrum is that of a black body when measured

near the event horizon. The information paradox arises when one realizes that the complete

evaporation by Hawking radiation of a black hole formed by the collapse of an initial pure

1See [4, 5] for reviews on the AdS/CFT correspondence.
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state results in a mixed (thermal) state — unitarity is violated in the process. On the

other hand, the manifest unitarity of the dual field theory indicates that information is

preserved in the process of black hole formation and consequent evaporation [8].

In an attempt to use AdS/CFT to address the information paradox it seems that we

must consider black holes in asymptotically AdS spacetimes. However, not all such black

holes are good candidates. The so-called large black holes in AdS are thermodynamically

stable: their specific heat is positive [9]. This means that they do not evaporate by Hawking

emission. Instead they reach a configuration of thermal equilibrium with the surrounding

gas of particles. Heuristically, the emitted radiation is reflected at the boundary and is

reabsorbed by the black hole long before it evaporates. Nevertheless, this class of black

holes corresponds precisely to the situation which has a known dual description in terms of

a high temperature thermal state in the CFT [10]. The class of small black holes in AdS

has negative specific heat and is therefore thermodynamically unstable.2

The precise formulation of the AdS/CFT correspondence presented in [2, 3] requires

imposing a Dirichlet boundary condition on the bulk fields.3 This situation amounts to total

reflectivity of the AdS boundary. Therefore, we are forced to change the boundary condi-

tions for the bulk fields in AdS in such a way that the boundary becomes partially absorb-

ing, thus allowing the evaporation of a large black hole. If this is attained, there is hope that

the AdS/CFT prescription can be used to gain further insight into the information paradox.

In a previous paper [13] we constructed a model in which the above-mentioned total

reflectivity of the AdS boundary is altered. This was accomplished by gluing an additional

(1 + 1)-dimensional flat spacetime to the boundary of AdS5 where only an auxiliary field

σ(t, z) (the evaporon) is allowed to propagate. The evaporon interacts with the bulk scalar

field Φ (hereafter referred to as the dilaton) only along the intersection of the two spaces.

If t is the timelike coordinate, x are the spacelike boundary coordinates and r represents

the holographic coordinate of AdS5 then this hypersurface is defined by r = ε, where ε is a

regulator for the AdS bulk. The dual interpretation is clear: we are adding an extra sector

to the CFT and the desirable evaporation of a large black hole in AdS corresponds to the

transfer of energy to this infinite external reservoir.

The interaction term in the action describing the dilaton-evaporon system couples the

two fields in the simplest possible way, with a strength controlled by a constant λ:

Sint[Φ, σ] = λ

∫
dtd3x

√
−hΦ(t,x, ε)σ(t, 0) , (1.1)

where h is the determinant of the metric induced on the interaction hypersurface. The

remainder of the action constitutes kinetic terms for the two fields plus a piece containing

counterterms for σ: these are needed to renormalize the theory. The counterterms were

judicially computed in ref. [13] where it was noted that their addition is crucial to obtain

finite results when one takes the cutoff ε → 0.

2See however ref. [11] for some ideas regarding their dual interpretation.
3This condition can be relaxed, thus obtaining a dynamical metric for the boundary theory [12].
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The main result of ref. [13] is an expression for the transmission coefficient of a wave

corresponding to a massless, minimally coupled scalar bulk field incident on the boundary:

|T |2(ω) =
2

1 + 1
4π

(
ω4

ω

)3
+ π

(
ω
ω4

)3 [
1 + 4

π2 (ln(µ ω))2
] , (1.2)

where we have defined ω4 ≡ 8(2λ2κ2R5V3)
−1/3. Here, R is the AdS scale and κ2 is related to

the 5-dimensional Newton constant G5 through κ2 = 8πG5. The calculation that yielded

this result was performed in Poincaré coordinates corresponding to the metric near the

boundary of AdS. In these coordinates the boundary is flat and infinite in extent. Therefore

to regulate the IR divergences, which would be absent if we considered AdS in global

coordinates for which the boundary is R × S3, we periodically identified the transverse

space with a volume V3 and µ is an infrared cutoff scale.

In principle the above framework allows black holes in AdS with known holographic

duals to evaporate. But to determine the rate of evaporation one ingredient is still missing:

the greybody factor, which accounts for the fact that the emitted Hawking radiation needs

to traverse frequency-dependent potential barriers due to the background geometry in

order to reach asymptotic infinity. The greybody factor thus corrects the otherwise perfect

blackbody emission spectrum of a black hole.

There is by now a vast literature on this subject. Early studies were conducted in

the nineteen-seventies [14–18]. Greybody factors were also at the origin of the AdS/CFT

correspondence, where they play a fundamental role in showing that the emission rates of

black holes and of their corresponding D-brane systems precisely agree in various situa-

tions [19, 20]. In the context of black holes in string theory, greybody factors have been

obtained for several configurations, e.g. [21–24]. More recently, the idea of large extra

dimensions and the prospect of producing black holes at the Large Hadron Collider has

renovated the interest in the subject since the greybody factors can encode a fair amount

of information pertaining to brane-world models (see ref. [25] for a review, refs. [26–30]

and references therein for more recent studies in the same spirit). In any event, greybody

factors have been considered in a wide variety of cases: spherically symmetric, rotating

and charged black holes and black branes in various dimensions, for several theories of

gravity and particle spin. Most relevant for our purposes, reference [31] presented ana-

lytic results valid in the low frequency regime for greybody factors of static, spherically

symmetric black holes in asymptotically AdSd spacetimes. Nevertheless, there is a clear

deficit of exact results in the literature regarding greybody factors in asymptotically AdS

spacetimes. In the present paper we shall present results for the black 3-brane in AdS5.

Given the setup of the evaporon model discussed above, and more specifically the fact

that the computations were performed in Poincaré coordinates so that the boundary of

AdS5 becomes R × R
3, it is natural to consider a black hole possessing a horizon with

three flat directions, i.e., a black 3-brane in AdS5. The goal of the present paper is to

compute the greybody factors for this geometry and consequently obtain the evaporation

rate allowed in the framework of [13]. We note that the analysis of [31], even though

concerned with spherically symmetric black holes, can be adapted to our case since the

– 3 –
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metric will only depend on one coordinate as well, namely the holographic coordinate.

Having obtained the greybody factor one can express the asymptotic flux of evaporons per

unit frequency interval as the product of three terms: the blackbody spectrum for bosons[
eω/TH − 1

]−1
, where TH is the temperature of the black brane,4 the greybody factor Γ(ω)

and the transmission coefficient at the dilaton-evaporon interface, |T |2. Correspondingly,

the energy emitted per unit time is given by

dE

dt
=

∫
dω

2π

ω Γ(ω)

eω/TH − 1
|T |2(ω) . (1.3)

Note that given the form of the interaction term (1.1) only the dilaton mode independent

of the transverse directions x couples to the evaporon. This corresponds to the planar limit

of the s-wave. Therefore the greybody factor that enters into the power spectrum (1.3) is

the one pertaining to the mode propagating purely in the holographic direction. All other

modes do not contribute.

The rest of the paper is organized as follows. In section 2 we briefly describe the black

3-brane background for which we shall compute the greybody factors. The formalism

behind this calculation is presented in section 3, closely following ref. [31]. Here we also

present the numerical results and compare them with the analytic predictions valid for low

frequencies. In the following section we use these results to obtain the decay rate of the

black brane. Section 5 contains the conclusions. The appendices present derivations of the

low- and high-frequency behavior of the greybody factor.

2 The geometry and properties of the black 3-brane

The metric which describes a black 3-brane with AdS5 × S5 asymptotics is the follow-

ing [33, 34]:

ds2 = H−1/2(r)
[
−f(r)dt2 + dx2

]
+ H1/2(r)

[
f−1(r)dr2 + r2dΩ2

5

]

= − r2

R2

(
1 − r4

H

r4

)
dt2 +

r2

R2
dx2 +

R2

r2

(
1 − r4

H

r4

)−1

dr2 + R2dΩ2
5 , (2.1)

where

H(r) =

(
R

r

)4

, f(r) = 1 −
(rH

r

)4
. (2.2)

This is a solution of type IIB string theory in 10 dimensions of the form X ×S5, where the

five-sphere has constant radius R and it corresponds to the decoupling limit of a stack of

D3-branes. The five dimensional manifold X features a regular horizon at r = rH and in

the limit r → ∞ it approaches the metric of AdS5 in Poincaré coordinates,

ds2
AdS5

=
r2

R2

[
−dt2 + dx2

]
+

R2

r2
dr2 . (2.3)

We see that the length R also determines the AdS scale. The five-sphere plays no role in

the following so we shall drop it from now on.

4The Hawking radiation from black holes in AdS acquires the same blackbody form as in the asymptot-

ically flat case [32].
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The Hawking temperature TH of the black 3-brane can be found by performing a

Wick rotation and a change of the radial coordinate in such a way that the (t, r)-part of

the metric becomes simply the metric of the Euclidean plane in polar coordinates. To

avoid a conical singularity at the origin the angular coordinate, which is proportional to

the Euclidean time, must have periodicity 2π and this implies that

TH =
1

4π

d

dr

(
f(r)√
H(r)

)
=

rH

πR2
. (2.4)

The energy and entropy per unit 3-volume of this black hole are given by [34, 35]:

E

V3
=

3r4
H

2κ2R5
,

S

V3
=

2πr3
H

κ2R3
. (2.5)

Observe that, since both the temperature and energy are proportional to positive powers

of rH , these black objects have positive specific heat and therefore do not evaporate if the

boundary of AdS is totally reflective. In this sense, these black branes fall in the category

of the large black holes in AdS.

3 The greybody factor

3.1 Formalism

Consider a massless, minimally coupled scalar field Φ propagating in this geometry. In

particular, let this mode have definite frequency ω and wavevector k,

Φ(t,x, r) = eiωt−ik·xφω,k(r) . (3.1)

One can always obtain the general solution as a sum over all possible modes. The equation

of motion for the scalar field is (from now on we suppress the subscripts ω,k)

∂r

[
r5f(r)∂rφ

]
+ R4r

[
f−1(r)ω2 − k2

]
φ = 0 . (3.2)

Now let k2 = m2ω2. After a coordinate change from r to the dimensionless variable

u ≡ r2
H/r2 the above equation of motion becomes

∂2φ

∂u2
− 1 + u2

u(1 − u2)

∂φ

∂u
+

ω̃2

4u(1 − u2)2
(
1 − m2(1 − u2)

)
φ = 0 . (3.3)

According to the arguments presented at the end of the introduction, to obtain the rate of

evaporation in the context of the evaporon model we just need to consider the case m = 0,

i.e., modes traveling purely in the holographic direction. But for now we keep m general.

This will allow us to compute numerically (and analytically, in the low frequency regime)

the greybody factor for a general value of m. The absorption coefficient is expected to be

lower for modes with m 6= 0, as this corresponds to a higher potential barrier that must

be traversed to reach infinity (see eq. (3.8) below).

– 5 –
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We see that the problem has only a single parameter, namely the dimensionless com-

bination of the frequency, the AdS scale and the horizon radius:

ω̃ ≡ ω
R2

rH
. (3.4)

This is in line with the findings of [36] where it was shown that for large AdS black holes

the quasinormal frequencies must be proportional to the temperature. Equation (3.3) is

a second order linear ODE with 4 regular singular points, namely u = 0, 1,−1,∞. Such

equations are known in the literature as Heun equations and complete solutions are beyond

present knowledge. Note that the region rH ≤ r < ∞ is mapped to the interval u ∈ (0, 1].

Instead of the holographic coordinate r it is sometimes useful to consider the so-called

tortoise coordinate x which satisfies dx = H1/2(r)f−1(r)dr, or equivalently

dx

dr
=

R2

r2

(
1 − r4

H

r4

)−1

. (3.5)

Upon integration the tortoise coordinate may be expressed in terms of r,

x(r) =
R2

rH

{
1

2
arctan

(
r

rH

)
+

1

4
ln

(
8
r − rH

r + rH

)
− π

8

}
. (3.6)

Equation (3.5) does not completely specify x. We have chosen the integration constant in

such a way that x ≃ R2

4rH
log (4(r − rH)/rH) for r − rH ≪ rH . Approaching the horizon

(r → rH) corresponds to the limit x → −∞. The tortoise coordinate covers only the region

outside the horizon.

In what comes next we shall follow the analysis of ref. [31]. The equation of motion for a

scalar field mode with frequency ω can be recast in a Schrödinger-like form in one dimension:

[
∂2

x + ω2 − V (r)
] (

r3/2φ
)

= 0 , (3.7)

where the potential V is given by

V (r) =
15

4

r2

R4
f(r)2 + 6

r4
H

r2R4
f(r) + m2ω2f(r) . (3.8)

In the near-horizon region (r ≃ rH and V (r) ≪ ω2) the solution is

φ(r) = Aeiωx . (3.9)

Here we chose the solution that is purely ingoing at the horizon. Now, given the

Schrödinger-like form of eq. (3.7) it follows immediately that the current

j =
1

2i

(
φ∗dφ

dx
− φ

dφ∗

dx

)
(3.10)

is conserved. This conserved current (3.10) is nothing but the flux per unit coordinate

area. Thus, the flux per unit physical transverse area near the horizon is

Jhor =
r3
H

R3
ω|A|2 =

r4
H

R5
ω̃|A|2 . (3.11)

– 6 –
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Next consider the equation of motion (3.2) in the asymptotic region. For large r (i.e.

r ≫ rH) it reduces to
[

d2

dr2
+

5

r

d

dr
+ (1 − m2)ω2 R4

r4

]
φ(r) = 0 , (3.12)

and the solutions may be expressed in terms of Hankel functions of degree two:

φ(r) = C1(1−m2)
ω2R4

r2
H

(1)
2

(√
1 − m2

ωR2

r

)
+ C2(1−m2)

ω2R4

r2
H

(2)
2

(√
1 − m2

ωR2

r

)
.

(3.13)

The first term is associated with the outgoing part of the wave-function φ. Similarly, the

second term is identified with the ingoing piece. If we now compute the asymptotic flux

per unit physical area using eq. (3.10) we obtain

Jasy =
2

π
(1 − m2)2ω4R3

[
|C2|2 − |C1|2

]
=

2

π
(1 − m2)2ω̃4 r4

H

R5

[
|C2|2 − |C1|2

]
. (3.14)

The fact that the current (3.10) is conserved manifests itself in the equality Jhor = Jasy.

To compute the greybody factor it is useful to define the ingoing and outgoing parts

of the asymptotic flux:

Jin =
2

π
(1 − m2)2ω4R3|C2|2 ; Jout =

2

π
(1 − m2)2ω4R3|C1|2 . (3.15)

In this case the greybody factor is defined [31] by the ratio of the (ingoing) flux at the

horizon by the ingoing part of the asymptotic flux:

Γm(ω) ≡ Jhor

Jin
. (3.16)

Given that the general solutions near the horizon and near the boundary are known, all

we need is to find the interpolation that connects the two regions. In other words, if

the solution has the behavior displayed in eq. (3.9) when r → rH , our task is to express

the constant C1 (and consequently C2 as well) characterizing the asymptotic solution in

terms of the constant A. However, this program is frustrated by the lack of known global

solutions to the Heun equation so we shall resort to numerical methods in the next section.

Nevertheless, an analytic expression can be obtained for the greybody factor in the limit of

low frequencies (compared to the Hawking temperature of the black hole). The analysis is

similar to that performed in ref. [31] (which concerned spherically symmetric black holes,

but in our case the metric only depends on a single coordinate as well) and is relegated to

appendix A. In this limit the greybody factor is given by

Γm(ω) ≃ π

2
(1 − m2)2

(
R2ω

rH

)3

=
π

2
(1 − m2)2ω̃3 . (3.17)

This approximation is valid as long as the frequency is small compared to the temperature

of the black brane ω ≪ TH , or equivalently, ω̃ ≪ 1/π. In the opposite limit, greybody

factors at high energy (beyond the geometrical optics approximation) have been considered

more recently in [29]. Appendix B contains a derivation of the greybody factor in the high

frequency regime for the black branes considered in this paper. This derivation resorts to

the solution-matching technique as well, but in addition employs a WKB approximation

to find the solutions away from the boundary of AdS.

– 7 –
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3.2 Numerical results

We already mentioned in the previous section the overall strategy to compute the greybody

factor. Now we briefly describe the numerical implementation. First, we choose to work

with the coordinate u because the physical region outside the horizon is converted to a

finite interval in this coordinate, namely (0, 1]. The differential equation (3.3) is then

solved numerically within this interval supplemented by a boundary condition imposed

near the singular point u = 1. This boundary condition is nothing but the requirement

that the wave is ingoing at the horizon, i.e. the numerical solution and its first derivative

at u = 1 − ǫ are equal to eq. (3.9) and its first derivative, and then we let ǫ → 0.

To extract the coefficients C1 and C2 we first note that eq. (3.13) may be written in

terms of Bessel functions as well. Replacing r by rH/
√

u we have

φ(u) = (C1 + C2)G+(u) + i(C1 − C2)G−(u) . (3.18)

with

G+(u) = (1 − m2)ω̃2uJ2

(
ω̃
√

(1 − m2)u
)

, (3.19)

G−(u) = (1 − m2)ω̃2uY2

(
ω̃
√

(1 − m2)u
)

. (3.20)

If we denote the numerical solution by φNS then the coefficients C1 and C2, for a given

frequency ω, can be obtained by

(C1 − C2) = limu→0
φNS(u)

iG−(u)
, (3.21)

(C1 + C2) = limu→0
φ′

NS(u) − i(C1 − C2)G
′
−(u)

G′
+(u)

. (3.22)

After the determination of these coefficients the greybody factor follows immediately from

Γm(ω) =
π

2ω̃3(1 − m2)2
|A|2
|C2|2

. (3.23)

The results are shown in figure 1 and figure 2. Figure 1 presents the greybody factors

for various values of m. We find that the greybody factor smoothly interpolates between

0 and its asymptotic value 1. This is in line with the results of [31] who showed that, at

least in the low-frequency regime, the large AdS black holes can never have Γ(ω) = 1. The

numerical results are in very good agreement with the analytic approximation valid at low

frequencies. The greybody factor flattens out for larger m and for m = 1 it must vanish

identically, as discussed in appendix A.

Appendix B shows that the greybody factor tends to 1 at high frequencies. The

approach to this limiting value is also shown to be slower than 1/ω̃3. This is confirmed

by figure 2 where the approach of Γ(ω) to 1 is seen to go like ω̃−8 for large frequencies.

The small feature around ω̃ ∼ 4.5 persists when we increase the precision of the numerical

calculations. Its explanation remains unclear at the moment but one possibility is that it

may be related to the lowest quasinormal mode of large AdS black holes.

– 8 –
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Figure 1. The greybody factor is plotted as a function of the dimensionless frequency ω̃ = ωR2/rH

for three values of m. The dots correspond to the numerical results and interpolating lines have been

added to guide the eye. The thin red lines represent to the analytic results valid in the limit of low

frequencies. On the right-hand panel a close-up around small ω̃ is displayed in a log-log plot. The top

curves correspond to m = 0, the middle ones to m = 0.5 and the lower ones to m = 0.8. The agree-

ment between the numerical result and the analytic approximation at low frequencies is manifest.

0.5 1.0 2.0 5.0 10.0

10
- 9

10
- 7

10
- 5

0.001

0.1

1 − Γ(ω)

ω
∼

Figure 2. The approach of the greybody factor to unity (its limiting value) is plotted as a function

of the dimensionless frequency ω̃ = ωR2/rH for m = 0. The dashed line corresponds to the fit

1 − 2.3ω̃−8 performed on the interval ω̃ ∈ [8, 15].

4 The decay rate

In the previous section we obtained the greybody factor for the particular geometry under

consideration. This can now be used to compute the rate of evaporation of the black

3-branes by employing eq. (1.3). Before proceeding, a few comments are in order.

First of all, we should note that the parameter ω4 that enters the transmission co-

efficient (1.2) can be chosen freely by adjusting the coupling constant λ of the evaporon

model. Secondly, given our ignorance about the IR cutoff µ we will integrate the power

spectrum over frequencies small compared to ω4. Indeed, for

ω

ω4
≪ 1

3
√

2π
, (4.1)

– 9 –
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the log term in (1.2) can be safely ignored. This procedure yields a slight underestimate

for the decay rate. Introducing the notation ω̃4 = ω4R
2/rH we then have

dE

dt
>∼

r2
H

2πR4

∫
eωmax

0
dω̃

ω̃ Γ(ω̃)

eπeω − 1

2

1 + 1
4π

(
eω4

eω

)3
+ π

(
eω
eω4

)3 . (4.2)

As discussed in the introduction, only the m = 0 mode enters the computation of the

decay rate.

The fist term in the above integral peaks5 roughly at ω̃ ≈ 1, whereas the maximum

of the second term is determined by ω̃4. The rate of evaporation is basically given by the

integral of the overlap of these two functions and a good estimate is obtained when the

upper limit of integration satisfies

1 ≪ ω̃max ≪ ω̃4 . (4.3)

Nevertheless, the rate is optimized by taking the smallest possible ω̃4 for which the above

condition can be met. For example, choosing ω̃max = 5 and ω̃4 = 20 the integral of eq. (4.2)

gives roughly 2×10−4. Even though this procedure gives better estimates for the decay rate

than what we shall consider below, it hides some of the dependence on the horizon radius in

the parameter ω̃4 and so it is difficult to follow the evaporation history of the black brane.

If on the other hand we take ω̃max ≪ 1/π we can use the low-frequency approximation

for the greybody factor and obtain analytically an underestimate for the decay rate, which

however yields the exact dependence on rH . Using eq. (3.17) and noting that the second

term in the denominator of the transmission coefficient largely dominates the others we

arrive at
dE

dt
>

πr5
H

ω3
4R

10

∫
eωmax

0
dω̃

ω̃7

eπeω − 1
. (4.4)

This integral can be computed exacly and it is given in terms of polylogarithms. For

ω̃max ≃ 0.1 its numerical value is 4 × 10−9. For the same choice as above, ω̃4 = 20, the

lower bound (4.4) is roughly 8 orders of magnitude smaller than that obtained from the

estimate (4.2). In any event, the lower bound (4.4) allows us to obtain an upper limit

for the evaporation time. Using the relation between the mass of the black brane and its

horizon radius, eq. (2.5) with V3 = Vol(S3)R3 = 2π2R3, we find that the time it takes for

the horizon length to drop from rini
H to rfin

H is bounded by

∆t < 109 3πω3
4R

8

κ2

(
1

rfin
H

− 1

rini
H

)
. (4.5)

For illustration purposes, taking the initial configuration to have an infinitely large horizon

radius, the time elapsed until the black hole reaches the category of ‘small black holes’,

i.e., when rfin
H ∼ R, is less than 109 3πω3

4
R7

κ2 . An improved bound by several orders of

magnitude is achievable by integrating numerically the rate of evaporation (4.2) but this

5If the greybody factor were given by its low-frequency behavior (3.17) then the peak would be at

eω ≃ 1.25.
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involves specifying the parameter ω4. A full account of the black brane evaporation history

is outside the scope of this paper.

In any case, the evaporon model allows the large black holes in AdS to evaporate in a

finite time. According to [37] information must start being recovered in the Hawking parti-

cles as soon as a black hole radiates half its initial entropy if the evolution is unitary. Given

the relation (2.5) this will occur as long as rini
H ≥ 3

√
2rfin

H . Therefore, for large enough initial

horizon length one still recovers the black hole information paradox and it is conceivable

that the evaporon model can be used to shed some light on that long-standing issue.

5 Conclusions

The AdS/CFT correspondence provides a promising playground to investigate the black

hole information paradox as it relates a gravitational theory to a unitary quantum field

theory. This has been apparent from the early days of the gauge/gravity duality but an

explicit framework in which black holes with known CFT duals are allowed to evaporate

is not easy to find. The model developed in [13] permits such a situation by coupling a

bulk field to the evaporon, a scalar field living on an auxiliary flat space. This corresponds

to coupling an extra sector to the CFT, thus providing an infinite reservoir for the field

theory to cool down.

To compute the evaporation rate of the so-called large black holes in AdS, which is

made possible by the evaporon model, one needs the corresponding greybody factor. This

is just the probability for a wave emitted from the black hole horizon to be transmitted

though the potential barrier created by the spacetime geometry and reach infinity. In this

work we have studied this transmission coefficient for a minimally coupled, massless scalar

field on a black 3-brane background with AdS5 asymptotics. This geometry falls in the

category of ‘large’ AdS black holes. We computed the greybody factor both analytically in

the low- and high-frequency limits and numerically, having obtained excellent agreement

in the frequency regimes where comparison is meaningful.

The explicit results for the greybody factor allowed us to obtain an estimate and a

lower bound on the evaporation rate of the black brane. The evaporon model thus permits

a large black hole in AdS to evaporate in finite time until it becomes a small AdS black

hole. During this whole evolution most of the initial entropy of the black hole is radiated

(for large enough initial black holes) and the dual description is controlled, indicating a

unitary process.
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Casals and Paolo Pani. This work was partially supported by Fundação para a Ciência e

Tecnologia (FCT) - Portugal through project PTDC/FIS/64175/2006. I also acknowledge

financial support from FCT fellowship SFRH/BPD/47332/2008.

– 11 –



J
H
E
P
0
8
(
2
0
0
9
)
0
2
7

A Low-frequency behavior of the greybody factor

This appendix reproduces the calculation of the greybody factor for low frequencies com-

pared to the Hawking temperature of the black 3-brane in the AdS5 background. It is a

very slight generalization of the study performed in ref. [31] using the matching technique,

in the sense that we are able to consider modes with m 6= 0, i.e. not purely transverse

to the brane, whereas the computations of ref. [31] were only done for the ℓ = 0 mode.

However, we specialize our discussion to d = 5 spacetime dimensions.

We are interested in the low frequency regime, ω ≪ TH , or equivalently, using eq. (2.4)

ω̃ ≪ 1/π . (A.1)

Under this assumption it is not hard to see that we must have r ≃ rH in the region defined

by V (r) ≪ ω2. This is the near-horizon region and the corresponding incoming solution

was given in eq. (3.9). As in ref. [31] we can move slightly away from the horizon while

still remaining in the near-horizon region and the solution becomes

φ(r) ≃ A

[
1 +

i

4
ω̃ log

(
4
r − rH

rH

)]
. (A.2)

Consider now the intermediate region where V (r) ≫ ω2. This also implies that

V (r) ≫ ω2(1 − m2f(r)) and therefore the equation of motion in this region becomes

∂r

[
r5f(r)∂rφ

]
= 0. The general solution is

φ(r) = B1 +
B2

4r4
H

log

(
1 − r4

H

r4

)
. (A.3)

Matching this with (A.2) one finds

B1 = A ; B2 = Aiω̃r4
H . (A.4)

It is easy to check that in the low frequency regime the asymptotic region (r ≫ rH) is

contained in the intermediate region (defined by V (r) ≫ ω2). Hence, we can match the

wave-function (A.3) onto the solution for the asymptotic region (3.13) by considering the

limit r ≫ rH . The former and latter expressions become respectively

φ(r) ≃ A

(
1 − iω̃r4

H

4r4

)
, (A.5)

φ(r) ≃ (C2 − C1)
4i

π
+ (C1 + C2)(1 − m2)2

ω̃r4
H

8r4
. (A.6)

Thus, we find that

C1 = − iA

(1 − m2)2

[
1

ω̃3
− (1 − m2)2

π

8

]
, (A.7)

C2 = − iA

(1 − m2)2

[
1

ω̃3
+ (1 − m2)2

π

8

]
. (A.8)
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Plugging the expression for C2 into eq. (3.15) we obtain an expression for the greybody

factor for the mth mode of a scalar field propagating in the geometry of a black 3-brane

with AdS5 asymptotics, valid for low frequencies:

Γm(ω) =
Jhor

Jin
=

π

2
(1 − m2)2ω̃3 . (A.9)

Note that the greybody factor vanishes for m = 1 as expected since this corresponds to

propagation parallel to the brane.

B Large-frequency behavior of the greybody factor

In this appendix we derive the large-frequency behavior of the greybody factor using the

WKB approximation. For this purpose it is useful to recast eq. (3.3) in the following form:

∂2φ

∂z2
+

ω̃2

16

1 − m2e−z

(1 − e−z)3/2
φ = 0 . (B.1)

This is accomplished by an appropriate change of variables, z = − ln(1 − u2). We are

interested in obtaining an approximate solution of eq. (B.1) valid for large ω̃. Thus we write

φ(z) = eieωf(z) , f(z) =
∞∑

n=0

ω̃−nfn(z) , (B.2)

and use ǫ = 1/ω̃ as a small parameter for the perturbative expansion. Eq. (B.1) then

becomes
i

ω̃
f ′′(z) − f ′(z)2 +

1 − m2e−z

16(1 − e−z)3/2
= 0 . (B.3)

Inserting expansion (B.2) and working order by order in powers of 1/ω̃ one obtains

f ′
0(z) = ±

√
1 − m2e−z

4(1 − e−z)3/4
,

f ′
1(z) =

if ′′
0 (z)

2f ′
0(z)

= − i

8
e−z 3(1 − m2) + m2(1 − e−z)

(1 − e−z)(1 − m2e−z)
,

f ′
2(z) =

if ′′
1 (z) − f ′

1(z)2

2f ′
0(z)

= −e−z 8(2m2−3)+(9+4m2+4m4)e−z+10m2(1−2m2)e−2z +m4e−3z

32(1 − e−z)5/4(1 − m2e−z)5/2
. (B.4)

The integration of the above functions can be performed analytically in the case m = 0,6

to which we now restrict ourselves. Upon integration we get

f0(z) = ±π

4
(1 − i)

[
1 − 1√

2π
Bez

(
3

4
,
1

4

)]
, (B.5)

f1(z) = −3i

8
ln(1 − e−z) , (B.6)

f2(z) = − 12 + 3e−z

8(1 − e−z)1/4
, (B.7)

6The integration can also be done when m = 1 but this corresponds to the scalar field propagating

parallel to the black 3-brane.
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where Bw(a, b) is the incomplete beta function. Thus, to first order in the WKB approx-

imation, the solution to eq. (B.1) which is purely incoming at the horizon (z → ∞) is

φWKB(z) = b(1 − e−z)3/8 exp

{
−iω̃

π

4
(1 − i)

[
1 − 1√

2π
Bez

(
3

4
,
1

4

)]}
. (B.8)

This solution is valid for

ω̃ ≫ |f ′′
0 |

|f ′
0|2

=
3e−z

(1 − e−z)1/4
. (B.9)

The solution near the boundary (z ≃ 0) is given in eq. (3.13). We may express it in

terms of the coordinate z as

φNB(z) = α(ω̃z1/4)2J2(ω̃z1/4) + β(ω̃z1/4)2Y2(ω̃z1/4) . (B.10)

This must be matched onto the WKB solution to determine the relation between the

constants α, β and b. To this end we introduce the parameter ν through

ω̃ = ν(z−1/4 + 1) . (B.11)

For large ν, but still in the limit z → 0 and therefore for large ω̃, eq. (B.10) becomes

φNB ≃ ν3/2 cos ν

[
β − α√

π
+ O(ν−1)

]
+ ν3/2 sin ν

[
−α + β√

π
+ O(ν−1)

]
. (B.12)

On the other hand, if we take the z → 0 limit on the WKB solution (B.8) keeping ν fixed

and large,7 we obtain

φWKB ≃ b

ω̃3/2
ν3/2e−iν . (B.13)

Matching the two solutions φNB and φWKB we find that α =
√

π
2eω3/2

(i − 1)b and β =
√

π

2eω3/2
(1 + i)b. In terms of the solution presented in eq. (3.13) we have

C2 =

√
π

2ω̃3/2
(i − 1)b . (B.14)

Using eq. (3.10) to compute the conserved current at the horizon (e−z = 0) one obtains

Jhor =
r4
H

R5
ω̃|b|2 . (B.15)

This turns out to be equal to the incoming part of the asymptotic conserved current, given

the relation (B.14). Therefore we obtain that the greybody factor asymptotes to 1 at large

real frequencies, as expected. One can consider higher order corrections to the greybody

factor by including higher orders in the WKB expansion in ω̃−1, and therefore hope to

obtain the rate at which it approaches the limiting value 1. However, it appears that up to

4th order all the corrections vanish and at 5th order the validity of the WKB approximation

breaks down.

7This ensures the validity of the WKB approximation.
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